Hypothesis Testing

Using computer simulation. Based on examples from the infer package. Code for Quiz 13.

Load the R packages we will use.

Question: t-test

set.seed(123)

hr_1_tidy.cvs

hr  <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv", 
                col_types = "fddfff")

Use skim to summarize the data in hr

skim(hr)
Table 1: Data summary
Name hr
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 4
numeric 2
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
gender 0 1 FALSE 2 fem: 260, mal: 240
evaluation 0 1 FALSE 4 bad: 153, fai: 142, goo: 106, ver: 99
salary 0 1 FALSE 6 lev: 93, lev: 92, lev: 91, lev: 84
status 0 1 FALSE 3 fir: 185, pro: 162, ok: 153

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 40.60 11.58 20.2 30.37 41.00 50.82 59.9 ▇▇▇▇▇
hours 0 1 49.32 13.13 35.0 37.55 45.25 58.45 79.7 ▇▂▃▂▂

Q: Is the mean number of hours worked per week 48?

specify that hours is the variable interest

hr  %>% 
  specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
   hours
   <dbl>
 1  36.5
 2  55.8
 3  35  
 4  52  
 5  35.1
 6  36.3
 7  40.1
 8  42.7
 9  66.6
10  35.5
# ... with 490 more rows

hypothesize that the average hours worked is 48

hr  %>% 
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
   hours
   <dbl>
 1  36.5
 2  55.8
 3  35  
 4  52  
 5  35.1
 6  36.3
 7  40.1
 8  42.7
 9  66.6
10  35.5
# ... with 490 more rows

Generate 1000 replicates representing the null hypothesis

hr %>% 
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)  %>% 
  generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups:   replicate [1,000]
   replicate hours
       <int> <dbl>
 1         1  33.7
 2         1  34.9
 3         1  46.6
 4         1  33.8
 5         1  61.2
 6         1  34.7
 7         1  37.9
 8         1  39.0
 9         1  62.8
10         1  50.9
# ... with 499,990 more rows

The output has 500,000 rows

calculate the distribution of statistics from the generated data

null_t_distribution  <- hr  %>% 
  specify(response = age)  %>% 
  hypothesize(null = "point", mu = 48)  %>% 
  generate(reps = 1000, type = "bootstrap")  %>% 
  calculate(stat = "t")

null_t_distribution
Response: age (numeric)
Null Hypothesis: point
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1  0.802
 2         2 -0.706
 3         3  1.33 
 4         4 -0.245
 5         5 -1.11 
 6         6  0.382
 7         7 -0.904
 8         8  0.816
 9         9  0.968
10        10  0.979
# ... with 990 more rows

visualize the simulated null distribution

visualize(null_t_distribution)

calculate the static from your observed data

observed_t_statistic  <- hr  %>%
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)  %>%
  calculate(stat = "t")

observed_t_statistic
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1 x 1
   stat
  <dbl>
1  2.25

get_p_value from the simulated null distribution and the observed statistic

null_t_distribution  %>% 
  get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.022

shade_p_value on the simulated null distribution

null_t_distribution  %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")

Is the p-value <0.05? yes

Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no

Question: 2 sample t-test

hr_3_tidy.csv is the name of your data subset

hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_3_tidy.csv", 
                col_types = "fddfff")

Q: Is the average number of hours worked the same for both genders?

use skim to summarize the data in hr_2 by gender

hr_2 %>% 
  group_by(gender)  %>% 
  skim()
Table 2: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables gender

Variable type: factor

skim_variable gender n_missing complete_rate ordered n_unique top_counts
evaluation male 0 1 FALSE 4 bad: 72, fai: 67, goo: 61, ver: 47
evaluation female 0 1 FALSE 4 bad: 76, fai: 71, goo: 61, ver: 45
salary male 0 1 FALSE 6 lev: 47, lev: 43, lev: 43, lev: 42
salary female 0 1 FALSE 6 lev: 51, lev: 46, lev: 45, lev: 43
status male 0 1 FALSE 3 fir: 98, pro: 81, ok: 68
status female 0 1 FALSE 3 fir: 98, pro: 91, ok: 64

Variable type: numeric

skim_variable gender n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age male 0 1 38.23 10.86 20 28.9 37.9 47.05 59.9 ▇▇▇▇▅
age female 0 1 40.56 11.67 20 31.0 40.3 50.50 59.8 ▆▆▇▆▇
hours male 0 1 49.55 13.11 35 38.4 45.4 57.65 79.9 ▇▃▂▂▂
hours female 0 1 49.80 13.38 35 38.2 45.6 59.40 79.8 ▇▂▃▂▂

Use geom_boxplot to plot distributions of hours worked by gender

hr_2 %>% 
  ggplot(aes(x = gender, y = hours)) + 
  geom_boxplot()

specify the variables of interest are hours and gender

hr_2 %>% 
  specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  49.6 male  
 2  39.2 female
 3  63.2 female
 4  42.2 male  
 5  54.7 male  
 6  54.3 female
 7  37.3 female
 8  45.6 female
 9  35.1 female
10  53   male  
# ... with 490 more rows

hypothesize that the number of hours worked and gender are independent

hr_2  %>% 
  specify(response = hours, explanatory = gender)  %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  49.6 male  
 2  39.2 female
 3  63.2 female
 4  42.2 male  
 5  54.7 male  
 6  54.3 female
 7  37.3 female
 8  45.6 female
 9  35.1 female
10  53   male  
# ... with 490 more rows

generate 1000 replicates representing the null hypothesis

hr_2 %>% 
  specify(response = hours, explanatory = gender)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours gender replicate
   <dbl> <fct>      <int>
 1  55.7 male           1
 2  35.5 female         1
 3  35.1 female         1
 4  44.2 male           1
 5  52.8 male           1
 6  46   female         1
 7  41.2 female         1
 8  52.9 female         1
 9  35.6 female         1
10  35   male           1
# ... with 499,990 more rows

The output has 500,000 rows

calculate the distribution of statistics from the generated data

null_distribution_2_sample_permute  <- hr_2 %>% 
  specify(response = hours, explanatory = gender)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute")  %>% 
  calculate(stat = "t", order = c("female", "male"))

null_distribution_2_sample_permute
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
   replicate    stat
       <int>   <dbl>
 1         1 -1.81  
 2         2 -1.29  
 3         3  0.0525
 4         4 -0.793 
 5         5  0.826 
 6         6  0.429 
 7         7  0.0843
 8         8 -0.264 
 9         9  2.42  
10        10  0.603 
# ... with 990 more rows

visualize the simulated null distribution

visualize(null_distribution_2_sample_permute)

calculate the statistic from your observed data

observed_t_2_sample_stat  <- hr_2 %>%
  specify(response = hours, explanatory = gender)  %>% 
  calculate(stat = "t", order = c("female", "male"))

observed_t_2_sample_stat
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 1 x 1
   stat
  <dbl>
1 0.208

get_p_value from the simulated null distribution and the observed statistic

null_t_distribution  %>% 
  get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.892

Shade_p_value on the simulated null distribution

null_t_distribution  %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")

is the p-value <0.05? no

Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes

Question: ANOVA

hr_2_tidy.csv is the name of your data subset

hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv", 
                col_types = "fddfff")

Q: Is the average number of hours worked the same for all three status (fired, ok and promoted) ?

use skim to summarize the data in hr_anova by status

hr_anova %>% 
  group_by(status)  %>% 
  skim()
Table 3: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables status

Variable type: factor

skim_variable status n_missing complete_rate ordered n_unique top_counts
gender promoted 0 1 FALSE 2 mal: 90, fem: 89
gender fired 0 1 FALSE 2 fem: 101, mal: 93
gender ok 0 1 FALSE 2 mal: 73, fem: 54
evaluation promoted 0 1 FALSE 4 goo: 70, ver: 62, fai: 24, bad: 23
evaluation fired 0 1 FALSE 4 bad: 78, fai: 72, goo: 25, ver: 19
evaluation ok 0 1 FALSE 4 bad: 53, fai: 46, ver: 15, goo: 13
salary promoted 0 1 FALSE 6 lev: 42, lev: 42, lev: 39, lev: 34
salary fired 0 1 FALSE 6 lev: 54, lev: 44, lev: 34, lev: 24
salary ok 0 1 FALSE 6 lev: 32, lev: 31, lev: 26, lev: 19

Variable type: numeric

skim_variable status n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age promoted 0 1 40.63 11.25 20.4 30.75 41.10 50.25 59.9 ▆▇▇▇▇
age fired 0 1 40.03 11.53 20.3 29.45 40.40 50.08 59.9 ▇▅▇▆▆
age ok 0 1 38.50 11.98 20.3 28.15 38.70 49.45 59.9 ▇▆▅▅▆
hours promoted 0 1 59.21 12.66 35.0 49.75 58.90 70.65 79.9 ▅▆▇▇▇
hours fired 0 1 41.67 8.37 35.0 36.10 38.45 43.40 77.7 ▇▂▁▁▁
hours ok 0 1 47.35 10.86 35.0 37.10 45.70 54.50 78.9 ▇▅▃▂▁

Use geom_boxplot to plot distributions of hours worked by status

hr_anova %>% 
  ggplot(aes(x = status, y = hours)) + 
  geom_boxplot()

specify the variables of interest are hours and status

hr_anova %>% 
  specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  78.1 promoted
 2  35.1 fired   
 3  36.9 fired   
 4  38.5 fired   
 5  36.1 fired   
 6  78.1 promoted
 7  76   promoted
 8  35.6 fired   
 9  35.6 ok      
10  56.8 promoted
# ... with 490 more rows

hypothesize that the number of hours worked and status are independent

hr_anova  %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  78.1 promoted
 2  35.1 fired   
 3  36.9 fired   
 4  38.5 fired   
 5  36.1 fired   
 6  78.1 promoted
 7  76   promoted
 8  35.6 fired   
 9  35.6 ok      
10  56.8 promoted
# ... with 490 more rows

generate 1000 replicates representing the null hypothesis

hr_anova %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours status   replicate
   <dbl> <fct>        <int>
 1  41.9 promoted         1
 2  36.7 fired            1
 3  35   fired            1
 4  58.9 fired            1
 5  36.1 fired            1
 6  39.4 promoted         1
 7  54.3 promoted         1
 8  59.2 fired            1
 9  40.2 ok               1
10  35.3 promoted         1
# ... with 499,990 more rows

The output has **500,000* rows

calculate the distribution of statistics from the generated data

null_distribution_anova  <- hr_anova %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute")  %>% 
  calculate(stat = "F")

null_distribution_anova
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
   replicate  stat
       <int> <dbl>
 1         1 0.312
 2         2 2.85 
 3         3 0.369
 4         4 0.142
 5         5 0.511
 6         6 2.73 
 7         7 1.06 
 8         8 0.171
 9         9 0.310
10        10 1.11 
# ... with 990 more rows

visualize the simulated null distribution

visualize(null_distribution_anova)

calculate the statistic from your observed data

observed_f_sample_stat  <- hr_anova %>%
  specify(response = hours, explanatory = status)  %>% 
  calculate(stat = "F")

observed_f_sample_stat
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 1 x 1
   stat
  <dbl>
1  128.

get_p_value from the simulated null distribution and the observed statistic

null_distribution_anova  %>% 
  get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
  p_value
    <dbl>
1       0

shape_p_value on the simulated nll distribution

null_t_distribution  %>% 
  visualize() +
  shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")

Save the previous plot to preview.png and add to the yaml chunk at the top

ggsave(filename = "preview.png", 
       path = here::here("_posts", "2022-04-30-hypotheses-testing"))

if the p-value < 0.05? yes

Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no